LZI - Schloss Dagstuhl - Talks + Materials of Seminar 14461

Seminar 14461
High-performance Graph Algorithms and Applications in Computational Science

Ulrich Carsten Meyer (Goethe-Universität Frankfurt am Main, DE), Henning Meyerhenke (KIT - Karlsruhe Institute of Technology, DE), Ali Pinar (Sandia Nat. Labs - Livermore, US), Ilya Safro (Clemson University, US)

Caveat: Due to caching problems of dynamic webpages, sometimes newly
uploaded files are not shown. Please reload the page accordingly.


Seminar Wide Materials

Deepak Ajwani , Bell Labs - Dublin
 Semi-synchronous approach to community finding in large graphs
Abstracts: txt


Elisabetta Bergamini , KIT - Karlsruher Institut für Technologie

Rob Bisseling , Utrecht University

Erik Boman , Sandia National Labs - Albuquerque
 2-Dimensional Graph Partitioning for Scalable Matrix Computations on Small-World Graphs
Abstracts: txt

 Manycore Graph Algorithms and the Kokkos Library
Abstracts: txt


Christian Brugger , TU Kaiserslautern
 Beyond the abstract machine model – How looking at real computing systems leads to new algorithmic insights and massive speedups: two case studies
Abstracts: txt


Aydin Buluc , Lawrence Berkeley National Laboratory
 The Graph BLAS: building blocks for graph algorithms in the language of linear algebra.
Abstracts: txt Slides: pdf


Umit V Catalyurek , Ohio State University

Deepayan Chakrabarti , Facebook - Menlo Park
 Joint Inference of Multiple Label Types in Large Networks
Abstracts: txt


Yann Disser , TU Berlin

John Feo , Pacific Northwest National Lab. - Richland
 GEMS: an in-memory, semantic graph database
Abstracts: txt


Enver Kayaaslan , ENS - Lyon

Dominique LaSalle , University of Minnesota - Minneapolis
 Multi-Threaded Modularity Based Graph Clustering using the Multilevel Paradigm
Abstracts: txt Slides: pdf


Andrew Lumsdaine , Indiana University - Bloomington
 Distributed control for scalable parallel algorithms


Kamesh Madduri , Pennsylvania State University - University Park
 PULP: Fast and Simple Complex Network Partitioning
Abstracts: txt Slides: pdf


Aleksander Madry , EPFL - Lausanne

Fredrik Manne , University of Bergen

Friedhelm Meyer auf der Heide , Universität Paderborn

Henning Meyerhenke , KIT - Karlsruher Institut für Technologie
 Fast generation of dynamic complex networks with underlying hyperbolic geometry
Abstracts: txt


Ulrich Carsten Meyer , Goethe-Universität - Frankfurt a. M.
 External memory graph algorithms
Abstracts: txt Slides: pdf


Benjamin A Miller , MIT Lincoln Laboratory - Lexington

Petra Mutzel , TU Dortmund

Braxton Osting , University of Utah
 Geometric methods for graph partitioning
Abstracts: txt


Srinivasan Parthasarathy , Ohio State University - Columbus

Francois Pellegrini , University of Bordeaux

Ali Pinar , Sandia Nat. Labs - Livermore

Alex Pothen , Purdue University - West Lafayette
 Matching in the Time of Network Science
Abstracts: txt


Ilya Safro , Clemson University

Peter Sanders , KIT - Karlsruher Institut für Technologie

Christian Schulz , KIT - Karlsruher Institut für Technologie
 Parallel Graph Partitioning for Complex Networks
Abstracts: txt Slides: pdf


Anand Srivastav , Universität Kiel
 Big Data and HPC Aspects for Computing Maximum Matching and Minimum Coloring in (Hyper-)Graphs
Abstracts: txt


Christian Staudt , KIT - Karlsruher Institut für Technologie
 Tools for the Analysis of Large Networks: Algorithms and Software
Abstracts: txt


Veronika Strnadova , University of California - Santa Barbara
 Efficient and Accurate Clustering for Large-Scale Genetic Mapping
Abstracts: txt Slides: pdf Paper: pdf


Sivan Toledo , Tel Aviv University
 An Algebraic Perspective on the New Randomized Kaczmarz Solver
Abstracts: txt


Jesper Larsson Traeff , TU Wien

Bora Ucar , ENS - Lyon

Panayot S Vassilevski , LLNL - Livermore

David Veith , Goethe-Universität - Frankfurt a. M.
 An I/O-efficient Distance Oracle for Evolving Real-World Graphs
Abstracts: txt


Katharina A Zweig , TU Kaiserslautern

Tiago de Paula Peixoto , Universität Bremen
 Hierarchical Block Structures and High-Resolution Model Selection in Large Networks
Abstracts: txt



Creative Commons License
This webpage and the material that is made available on this webpage is licensed under a
Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Unported License.

The CC by-nc-nd license allows you to copy, distribute and transmit the work under the following conditions: